
	
1	 NINE	CRITICAL	FEATURES	FOR	OBJECT	STORES	

	

Nine	Critical	Features	for	Object	Stores	
	

All	you	need	to	know	to	review	object	storage	technology	and	help	focus	your	decisions	on	choosing	the	right	technology.		An	
independently	authored	guide,	written	by	Chris	M	Evans	of	Architecting	IT	and	sponsored	as	a	PDF	by	Data	Direct	Networks.	

	
2	 NINE	CRITICAL	FEATURES	FOR	OBJECT	STORES	

	

INTRODUCTION

Object storage is a relatively new market segment that has
continued to grow steadily and is starting to find more reasons for
adoption. For the uninitiated, object stores are used to hold large
volumes of unstructured data, where each “object” is essentially a
file with no specific format (also called a binary file). Object stores
can hold any type of data, from small objects that can be human-
readable files to media (audio and video) or other industry-specific
formats (oil & gas, medical imaging and so on).

The benefit of using an object store over traditional storage is
multi-fold. Block-based systems (e.g. Fibre Channel and iSCSI)
don’t scale out well and have no real understanding of the data
being stored. They are “dumb” block devices that serve content
with low latency and high granularity. File systems place some
structure onto data, putting file objects into hierarchies
(folders/directories) and attaching metadata to those objects.
However, the metadata is typically only based on the information
needed to store the file (time created, time updated, access
rules).

Object stores go one step further and remove the folder hierarchy.
Objects are stored with extensible metadata that is typically highly

searchable. In terms of scale, object stores can grow to multiple
(if not hundreds) of petabytes in size, usually with no restriction on
data geography. The use of object stores is gaining adoption in
the enterprise as the platform offers benefits over traditional forms
of storage. Block-based storage arrays don’t scale well and have
issues with data protection (e.g. RAID) with large numbers of
HDDs and SSDs. File-based systems are restricted by the
scalability of the file system itself, either in terms of object count,
concurrent or parallel access and recovery time to check the
consistency of the file system structure. Object stores represent a
simpler, more scalable solution and one that is easily accessed
over standard web-based protocols.

Possibly the biggest challenge for IT organisations looking to
adopt object stores is choosing how to use the platform and how
to evaluate vendor product offerings. Object stores use web-
based protocols and so require a degree of coding to use. This is
changing, as we will discuss later.

From a features perspective, there are many aspects to object
stores that make one platform more appropriate than another. In
the remainder of this post, we identify, categorise and describe
what IT organisations should be looking for in an object storage
platform.

	

	
3	 NINE	CRITICAL	FEATURES	FOR	OBJECT	STORES	

	

FEATURE 1 – SCALABILITY – BIG AND SMALL

As already discussed, object stores are designed to scale much
further than traditional data stores like scale-out NAS. Vendor
offerings run into the multi-petabyte capabilities, with the option to
store billions of objects. However, achieving high scalability is
much more than simply measuring object counts and data
volume. Considerations include:

• Object size. How well can the object store deal with small
and large objects? How are small objects handled?

• Capacity limits. Are there any real limits on capacity?
Does capacity growth require adding more hardware or
software nodes? Can I simply expand storage?

• Tiering & Caching. How does the object store manage
tiering of data? As capacities grow, naturally a large
volume of data will be inactive and present an opportunity
to archive to cheaper media. At this point, tiering becomes
a critical capability. Flash media can also be used to
accelerate performance when used as either a caching or
tiering layer.

• Metadata Management. As the object store grows, how
well is metadata managed? Does the size of the object
store affect the performance of search?

• Object Access. As the object store grows, does the
access time of any individual object increase (hopefully not
at all)?

The last point is particularly important for building out object
stores that will deliver access to many object store/retrieve
requests in parallel, such as systems serving as the backend of a
CDN network. Increasing the number of objects in an object store
shouldn’t significantly increase the retrieval time, or more
importantly the “time to first byte”, which is the time taken to start
to stream an object back to the requestor from the point of
receiving the request.

Of course, we shouldn’t forget that object stores may need to start
small and not be required to have an initial footprint in the
hundreds of terabytes or petabyte range. The capability to have a
small entry-level capability helps reduce the barriers to entry for
object storage adoption, with the added requirement to be able to
scale linearly from small to large with minimal operational impact.

	
4	 NINE	CRITICAL	FEATURES	FOR	OBJECT	STORES	

	

FEATURE 2 - DATA PROTECTION

The idea of data protection covers many aspects in an object
store. Compared to traditional “primary” storage, object stores are
likely to be used for the long-term retention of data, so data
durability becomes an important factor. We can think of durability
as the need to ensure that no logical corruption occurs on the
data being stored, due to a range of errors including hardware
read failures and data corruption.

Modern hard drives are hugely reliable compared to the devices in
use quarter of a century ago. Despite this, drives do suffer from
read errors and other transient problems. Object stores should
execute a range of on-disk management functions, including data
scrubbing, CRC checking and rebuilds of corrupted or
inconsistent data. These background tasks represent processes
to keep data healthy where long term retention is critical.

The second area to consider is that of hardware failure protection.
Most modern storage arrays implement RAID (Redundant Array
of Inexpensive Disks) as a method to recover data from loss due
to hardware failure. RAID has scalability issues as data volumes
start to rise. Storage vendors have implemented dual and even
triple parity to protect against multiple drive failures with large
HDD capacities, however, elongated drive rebuild times make
RAID impractical for the bulk of data in an object store.

The alternative is to protect data using erasure coding schemes.
Erasure coding describes a process of dividing and transforming
data into a number of redundant pieces, a minimum count of
which is needed to recover the original information. An encoding
scheme might, for example, translate data into 12 pieces, with any
8 required to rebuild the original data. The 12 pieces can be
distributed across multiple drives, servers/nodes or even
geographically to provide high resiliency. In a 12/8 scheme,
distributing the data across three locations means the loss of any
one location could be tolerated.

Object stores should provide erasure coding with variable
protection values, based on the customer needs. As erasure
coding has a significant processing overhead, RAID can also be
used to protect smaller objects and improve access performance.
Where data is distributed geographically, the impact of rebuild
over the network becomes important. Therefore, the specific
implementation of the erasure coding system (and the need to
retrieve data across the WAN) will directly impact on recovery
time and customer SLAs (Service Level Objectives). This issue
can also occur when local LAN latency is high – any distributed
network-based recovery will always be impacted by network
performance. Fast recovery is important as unprotected data
needs to be re-protected quickly, to avoid potential data loss.

	
5	 NINE	CRITICAL	FEATURES	FOR	OBJECT	STORES	

	

FEATURE 3 - SEARCHING, INDEXING AND METADATA

The ability to search and retrieve data in an object store is one of
the most critical requirements. Compared to structured data like
databases and file systems, object stores keep data in a flat
hierarchy, with only a small amount of logical or physical
separation, such as buckets or pools. This means that every
object stored needs to have plenty of information to make data
retrieval easy.

Object stores typically store data using one of two methods; either
the end user sets the name of the object (which could look like a
standard file name) or the object is stored and accessed using a
system-generated object ID (OID). Object IDs are typically long
strings of characters and numbers, randomly generated by the
object store itself.

Where OIDs are used, metadata is critical. The object store user
may also maintain a separate database of object IDs and their
uses. Metadata provides information on the object itself (system
metadata) such as object size, access permissions, the user
creating the object and so on. User metadata extends the
information stored with each object and is application specific
information used to deliver search and indexing capability.

The performance of metadata searches should be independent to
the amount of data stored in the object store itself. This is a
critical requirement in managing scalability.

FEATURE 4 - PERFORMANCE

In our discussion of requirements so far, performance is a theme
in the implementation of scalability, data protection and search.
When object stores were first developed, the idea of performance
wasn’t a key consideration, as many object stores were simply
used as long-term archives or backup repositories. Increasingly,
object platforms are being used for much more active data, either
as active archives or the repository for media and other streamed
content.

The result is the need for object storage platforms to provide high
throughput, scale performance linearly and to handle a high level
of concurrent requests. The need for concurrency is especially
important where object platforms are used as the backing store
for CDNs (content delivery networks) or other Software as a
Service (Saas) solutions. Concurrency means the ability to both
stream many objects at the same time and to be able to handle a
high number of individual requests per second. In terms of
metrics, typical measurements are based on IOPS (I/Os per
Second) and throughput (MB/s or GB/s).

	
6	 NINE	CRITICAL	FEATURES	FOR	OBJECT	STORES	

	

FEATURE 5 - SECURITY

As with any data store, security is a key feature. In object stores,
security features cover a number of aspects.

With the volume of data likely to be retained in an object store,
multi-tenancy becomes very important. Business users (either
separate departments in an organisation or separate
organisations) want to know that their data is isolated from access
by others. This means having separate security credentials and
offering encryption keys per customer or object within a customer.

Object stores typically provide access to data through
authentication keys that are supplied on an HTTP call to the
object store itself. These keys are credentials rather than typical
user/password combinations as the data could be passing over
the public internet. The wider task of managing credentials is part
of identity management features that can also provide integration
into standard platforms such as LDAP and Microsoft Active
Directory.

Access to individual objects or buckets will be assigned through
access control lists, that determine either individual or group-level
access to data. Many object stores will allow the access controls
to be set and managed through the same web-based REST
interface used to store and retrieve data.

In addition to managing identity, security has to be provided
through data encryption, both in flight and at rest. Typically, in-

flight protection is achieved at the protocol level, using TLS (e.g.
HTTPS). At rest, data should be encrypted to protect from direct
access, either at the physical server level or drive/device level.
The specific point or implementation of encryption can depend on
how the end users want to manage encryption keys. Data could
be encrypted before or while being added to the object store.

FEATURE 6 - COMPLIANCE & AUDITING

Compliance is another aspect to data security that focuses on
meeting regulatory requirements on the retention of data in
specific controlled industries such as healthcare and finance.
Typically, compliant systems need to be able to provide
immutability of data, offer object versioning (so changes can be
tracked), implement object locking or WORM (write once read
many), again for immutable data. Most object stores don’t update
data in place, compared to block and file-based systems. This
provides a degree of control that works well with compliance
requirements.

Auditing complements compliance, providing a trail that shows
how data was stored in an object store system. The audit trail can
also provide additional information such as the migration of data
between tiers, checksum validation on content (to ensure no
tampering) and all accesses to individual data objects or buckets.

	
7	 NINE	CRITICAL	FEATURES	FOR	OBJECT	STORES	

	

FEATURE 7 - DEPLOYMENT MODELS

Object storage has been at the forefront of the move towards
software-defined storage or SDS. The nature of large scale-out
deployments has meant object stores work well with the cost
model of commodity hardware and vendor-supplied software. As
a result, we see many object storage implementations based on
software only.

The use of commodity hardware, of course, doesn’t suit all
requirements. Many potential customers may be unwilling or
unable to manage the process of sourcing and building a bespoke
object storage solution, preferring instead to take a combined
hardware and software solution from the vendor. In this case,
vendors need to offer appliances to suit the needs of the
customer, potentially in partnership with server and storage
vendors already in the customer’s data centre. Why? Because
support models, in-house skills and deployment blueprints will
already be based on the preferred hardware vendor of choice.
For ultimate flexibility, vendors are likely to offer three choices:

• Software only – either as a VSA (virtual storage
appliance) or deployed natively onto hardware.

• Appliance – a dedicated hardware appliance, built as a
white-box or in conjunction with one of the main hardware
providers.

• Cloud – deployed as an instance in the public cloud.

For each option, customers should expect full interoperability and
consistent management interfaces.

FEATURE 8 - PROTOCOL SUPPORT & STANDARDS

Initial object stores were based on the HTTP(S) protocol, using
REST-based API calls to store and retrieve data. The use of
HTTP is flexible in that data can be accessed from anywhere on
the network (either local or wide-area), however, applications
have to be coded to use object stores, compared to accessing
data stored in scale-out file systems. As a result, vendors have
moved to add NFS and SMB support to their products, allowing
data to be stored and retrieved through standard file-based
protocols. To fully support scale-out capabilities, support should
include parallel file systems.

Extending protocol support means existing applications can be
easily ported or amended to use object stores for their data. Also
worth considering is the difference in architecture that is provided
by using an object store that emulates a file store, compared to a
scale-out file store. The underlying data isn’t stored using a
structure based on inodes and directories, so the concept of an
FSCK (file system scan) after a system crash doesn’t apply. This
has big implications for scalability and performance of object
stores supporting file systems compared to traditional file
systems. (continued….)

	
8	 NINE	CRITICAL	FEATURES	FOR	OBJECT	STORES	

	

Protocol support also needs to extend to adopting de-facto or
industry standards. For object stores, this means working with S3
and Swift, two of the “standards” that have gained widespread
popularity. Amazon’s early entry into the object market with the
S3 (Simple Storage Service) platform released in 2006 has made
the S3 API a standard that many vendors have chosen to follow
because it is well established, mature and comprehensive. Swift
has developed from the object storage component of the
OpenStack project.

FEATURE 9 - TOTAL COST OF OWNERSHIP

No summary of object storage would be complete without a
discussion on pricing and TCO. The most obvious licencing
model is one based on capacity – add more usable or raw
capacity to the platform and pay more for the licence in practical
increments. Vendors also have the option to charge per node,
which means end users need to make sure the hardware they
deploy provides the most capacity possible.

There is also the option to charge by feature, although some
vendors will see the opportunity to create a comprehensive
charging structure, inclusive of all feature options. This is

certainly more competitive from an end user perspective, where
hidden additional costs can be a problem.

Calculating TCO raises one interesting question on the efficiency
of object storage platforms. Scale-out node designs employ
compute, system memory and disk or flash storage to deliver a
certain amount of user capacity. When building on white-box
hardware, the efficiency of software has a direct correlation on the
cost of building a solution. As yet, there are no practical
benchmarks to compare the efficiency of object stores and this
remains one area that needs some development by the industry.

CONCLUSIONS

We have highlighted nine critical features of object stores.
Vendors will implement these features in ways that complement
their product architectures. When deciding on what platform is
right to employ in your business, some of these critical features
will be rate more highly than others. The list is presented here in
no particular order, however, as a prospective customer, the aim
should be to work through this list and determine those critical
features that deserve more investigation.

	

	
9	 NINE	CRITICAL	FEATURES	FOR	OBJECT	STORES	

	

THE AUTHOR

Chris M Evans has worked in the technology industry since 1987, starting as a systems programmer on the IBM mainframe platform, while
retaining an interest in storage. After working abroad, he co-founded an Internet-based music distribution company during the .com era,
returning to consultancy in the new millennium. In 2009 he co-founded Langton Blue Ltd (www.langtonblue.com), a boutique consultancy
firm focused on delivering business benefit through efficient technology deployments. Chris now writes a popular blog at
http://blog.architecting.it, attends many conferences and invitation-only events and can be found providing regular industry contributions
through Twitter (@chrismevans) and other social media outlets.

Email:	mailroom@architecting.it	
Twitter:	@architectingit	
	

No guarantees or warranties are provided regarding the accuracy, reliability or usability of any information contained within this document
and readers are recommended to validate any statements or other representations made for validity.

Copyright © 2017 Brookend Ltd. All rights reserved. No portions of this document may be reproduced without the prior written consent of
the company. Details are subject to change without notice. All brands and trademarks of the respective owners are recognised as such.

