
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Technical	Guide:	Introduction	to	the	S3	API	
	
All	you	need	to	know	to	get	started	with	object	storage	and	S3	API	compatibility.		An	independently	authored	guide,	written	by	
Chris	Evans	and	sponsored	by	Cloudian	Inc.		Release	1,	April	2016.	

INTRODUCTION - WHAT IS S3? - S3
AS THE DEFACTO STANDARD – S3

PRIMER

SECURITY AND ACCESS
MANAGEMENT – AUTHORISATION

REQUESTS – PERMISSIONS AS
CODE

ADVANCED FEATURES –
VERSIONING – TIERING –

REPLICATION – ENCRYPTION –
LOGGING AND BILLING

CONCLUSIONS – FURTHER
READING – REFERENCES – ABOUT

THE AUTHOR

	
	2 TECHNICAL GUIDE: INTRODUCTION TO THE S3 API 	

INTRODUCTION

The public cloud and Amazon Web Services in particular have
seen massive growth over the last few years. In April 2015,
Amazon broke out the revenue figures of AWS for the first
time, showing that the subsidiary was a $7.3 billion
business with over 1 million active customers, accounting
for 8% of Amazon’s total revenue. An 8-K submission in April
2016 indicated that the business is expected to reach $10
billion in revenue during 2016. At the heart of AWS is S3, the
Simple Storage Service, an online object store that is now ten
years old and stores trillions of objects (latest figures published
in 2013 showed 2 trillion objects, with the amount stored
doubling each year).

S3 has been remarkably successful and is the foundation for
many well known services such as Dropbox and
Pinterest. Part of the reason for this success has been the
flexibility of object stores compared to standard block and file
protocols. From a user perspective, these protocols provide
little in the way of capabilities for controlling how the data is
stored and managed (they only support basic I/O commands
like read, write, open and close).

S3 on the other hand is all about object level management and
manipulation, with S3 you can describe how you want to store

objects, encrypt them, present them (even as content for a
website) and much more. Each object is validated during I/O
operations unlike a file system (NFS/SMB) which does data
integrity checking only at the entire file system level.

In addition to the management capabilities is the relative ease
in which data can be stored in the system. The underlying
storage infrastructure isn’t exposed to the customer. Instead
access is provided through a set of programming interfaces,
commonly called the S3 API. It’s through a combination of
features with the simplicity and ubiquity of this API that S3 has
been so successful.

	
	3 TECHNICAL GUIDE: INTRODUCTION TO THE S3 API 	

WHAT IS S3?

The S3 API is an application programming interface that
provides the capability to store, retrieve, list and delete objects
(or binary files) in S3. When first released in 2006, the S3 API
supported REST, SOAP and BitTorrent protocols as well as
development through an SDK for common programming
languages such as Java .NET, PHP and Ruby. Storing and
retrieving data is remarkably simple; objects are grouped into
logical containers called buckets and accessed through a flat
hierarchy that simply references the object name, bucket
name and the AWS region holding the data. When using the
REST protocol, these pieces combine with a URL that
provides a unique reference for the object. Actions on the
object are executed with simple PUT and GET commands that
encapsulate the data and response into the HTTP header and
body. The SDKs provide the ability to obfuscate some of the
details of using HTTP-based calls.

S3 features are reflected in the API and have matured over
time to include:

• Metadata – this includes system metadata and
additional information created by the user when the
object is stored.

• Multi-tenancy – S3 is divided into many customers,
each of which sees an isolated, secure view of their
data.

• Security & Policy – access is controlled at the
account, bucket and object level.

• Lifecycle Management – objects can be both
versioned and managed across multiple tiers of
storage over the object lifetime.

• Atomic Updates – objects are uploaded, updated or
copied in a single transaction/instruction.

• Search – accounts and buckets can be searched
with object-level granularity.

• Logging – all transactions can be logged within S3
itself.

• Notifications – changes to data in S3 can be used to
generate alerts.

• Replication – data can be replicated between AWS
locations.

• Encryption – data is encrypted in flight and can be
optionally encrypted at rest using either system or
user generated keys.

• Billing – service charges are based on capacity of
data stored and data accessed.

Due to it’s longevity in the market and maturity of features, the
S3 API has arguably become the ‘de facto’ standard for object-

	
	4 TECHNICAL GUIDE: INTRODUCTION TO THE S3 API 	

based storage interfaces (with perhaps Swift a close 2nd in
certain markets). In addition to their own proprietary APIs,
pretty much every object storage vendor in the market place
supports S3 in some form or other. Having support for S3
provides a number of benefits:

• Standardisation – users/customers that have
already written for S3 can use an on-premises object
store simply by changing the object location in the
URL (assuming security configurations are
consistent). All of their existing code should work with
little or no modification.

• Maturity – S3 offers a wealth of features (as already
discussed) that cover pretty much every feature
needed in an object store. Obviously there are some
gaps (including object locking, full consistency and
bucket nesting), which could be implemented as a
superset by object storage vendors.

• Knowledge – end users who are looking to deploy
object stores don’t have to go to the market and
acquire specific platform skills. Instead they can use
resources that are already familiar with S3, whether
they are individuals or companies.

S3 AS THE DE-FACTO STANDARD

The current S3 API Developer Guide runs to 625 pages and
has updates monthly, so vendors’ claims of compatibility could
mean many things. Both Eucalyptus and SwiftStack claim S3
API support, however looking at the specific feature
support we see many gaps, especially around bucket-related
features and object-based ACLs (rather an important security
requirement). When establishing security credentials, AWS
currently uses two versions for signing (v2 and v4), each of
which provide slightly different functionality (such as being
able to verify the identity of the requestor). We will go into the
specifics of these features later.

As well as features/functionality, there are questions of
compatibility in terms of performance and the way in which the
S3 interface is implemented. Some vendors will translate S3
API calls into their own native API, rather than processing
them directly. This can lead to performance issues where on-
premises object stores don’t behave and respond with the
same error codes or response levels expected when using S3
directly.

	
	5 TECHNICAL GUIDE: INTRODUCTION TO THE S3 API 	

S3 PRIMER

Before going further into the S3 API, it’s worth spending a few
moments looking at some of the terms used when talking
about object storage. Permissions, providing access to data
within S3 are granted to buckets (collections of data), objects
(the actual content stored) or attributes of buckets and objects
(like archiving policies). Permissions can be set through
policies (either at the user or bucket level) or through
specific Access Control Lists (ACLs). We’ll come back and
discuss ACLs in a bit more detail in a moment, however in
general Object ACLs provide more granular permissions over
individual objects, whereas bucket and user policies provide
more general grouping capabilities. Bucket policies have to be
used when enabling permission from one S3 account to
another.

Users are individuals or services/applications that require
access to S3 resources. Each user has a user ID/password
that allows them to access features like the AWS console,
however all S3 API requests are made using access

keys generated by the user. These consist of an access
ID and a secret key that are combined to make an access
signature. The use of access keys in this way removes the
need for the user to hard code user IDs/passwords into API
requests that could be
intercepted over the
network.

Users can be placed
into groups, to allow
group-level permissions to be assigned, however groups are
not hierarchical and have a flat structure. Permissions can
also be grouped into roles, that can then be assigned to users
or groups. This idea will be familiar to Active Directory users
where specific tasks (like data operator) can be attributed to a
specific user without necessarily providing access to the actual
content.

Policies provide a mechanism to assign permissions either to
users or resources and the choice of which method to use is
down to the user themselves.

“Data	access	in	S3	is	simple;	
objects	are	grouped	in	
buckets	and	accessed	using	
store,	retrieve,	delete	and	list	
commands.”	

	
	6 TECHNICAL GUIDE: INTRODUCTION TO THE S3 API 	

SECURITY AND ACCESS MANAGEMENT

When S3 was first introduced, there were only two main
methods of accessing S3 content, either anonymously (in
which case access was open to all) or using an authenticated
request generated from access keys of the root AWS account
owner. In September 2010, Amazon extended the security
model to allow S3 resources to be controlled through the IAM
feature – Identity and Access Management.

There are now five main access routes into S3 content; these
are:

• Anonymous – resources can be made freely
available for access by anyone, without the need to
supply credentials.

• Account Access Keys – using a signature generated
from an account access ID/secret key pair.

• IAM User Access Keys – using a signature generated
from an IAM user’s access ID/secret key pair.

• Temporary Credentials – using temporary credentials
generated by an IAM user.

• Using Multi-Factor Authentication (MFA) with one of
the above methods.

AWS best practices recommend not using the root account
credentials. The root account has by default access to every

resource within the account, whereas IAM users by default
have no access. AWS also recommends creating one or more
IAM administrator users and using policies/roles to manage
the granting of permissions to buckets and objects within
them.

Access Control Lists
(ACLs) provide a
mechanism for
assigning permissions
that was available
before the introduction
of IAM. Generally, AWS recommends using IAM policies
however if ACLs are already in use, then there’s no need to
stop using them. There are specific times when ACLs need to
be used over IAM policies, such as applying permissions to
individual objects within a bucket. There are also limits on the
size of bucket policies, which may also mean using ACLs to
get around this restriction.

From the discussion so far, the terms and concepts of S3
security will be familiar to anyone who has worked with other
directory services such as Microsoft’s Active Directory or
generic LDAP.

“S3 provides a
comprehensive security and
identity management
capability, that will be familiar
to developers and users using
directory services such as
Active Directory”

	
	7 TECHNICAL GUIDE: INTRODUCTION TO THE S3 API 	

AUTHORISATION REQUESTS

Non-anonymous (authenticated) access requests made to S3
are signed using the access keys of the user. The keys
themselves are not directly used in an access request, instead
a signature is generated using a combination of the keys and
part of the data in the request (such as the parameters of a
query).

Two versions of signing are currently supported, known
as Signature Version 2 and Signature Version 4. Version 4 is
supported in all AWS regions; version 2 is supported in AWS
regions that were created before 30 January 2014 and is
therefore the legacy version. The changes from version 2 to
version 4 are focused around improving the security of
requests and making it more difficult to spoof or steal
credentials. For example, a signing key generated from the
user’s secret key is used for signing messages rather than the
secret key itself. Version 4 requests can also region specific
and reference a regional rather than global endpoint.

PERMISSIONS AS CODE

Policy definitions are created using the Access Policy
Language. This is a JSON-like coding structure that defines
the policy and its attributes. Policy definitions don’t have to be
created by coding – they can be generated using the AWS
Management Console, the CLI, API or PowerShell. However,

the ability to set permissions with
code does reflect one interesting
aspect of AWS, and that’s the
ability to programmatically manage
access to resources in S3. This
makes it possible to extract
definitions from one account,
region or bucket and easily apply it
to another. The ability to provide
mobility to security definitions is a
powerful tool and shouldn’t be underestimated when
evaluating object storage vendors claiming to provide 100%
S3 API compatibility.

SUPPORTING EXTERNAL USERS

What happens if the users that you want to provide access to
aren’t based within AWS itself? This scenario is perfectly
reasonable; imagine an object store used to retain medical
records. From a compliance perspective it would be much
more preferable to use some kind of external authorisation
process that maps to an existing identity management
system. S3 can enable that through temporary credentials
that use Federation. The process allows integration with
any OpenID or SAML 2.0 compatible authorisation process,
such as Microsoft’s ADFS (Active Directory Federation

	
	8 TECHNICAL GUIDE: INTRODUCTION TO THE S3 API 	

Services). Another example could be providing access to data
stored in AWS from a SharePoint environment.

BENEFITS OF MATURITY

So adding this all up,
what benefits do we get
from the way security
has been developed in
S3? Some specific
advantages include:

• Granularity – permissions can be defined onto items
as small as an object.

• Scale – group policies and roles allow attributes to be
defined across multiple users, objects and buckets.

• Delegation – permissions can be delegated out
through roles, assigning access to actions as well as
object policies.

• Multi-tenancy – permissions can be divided up
within a single AWS account or can be federated or
delegated to another AWS account or group of
external users.

• Audit – policies can be applied to audit the access of
users across an account.

• Mobility – both data and policy can be moved
between AWS accounts, regions or even to external
object store providers that fully support the S3 API.

“Using	a	standard	object	interface	like	
S3	means	developers	don’t	have	to	
learn	multiple	APIs	in	order	to	support	
multiple	platforms.		In	most	cases,	
code	can	be	reused	with	little	or	no	
modification.”		

	
	9 TECHNICAL GUIDE: INTRODUCTION TO THE S3 API 	

ADVANCED FEATURES

Versioning allows multiple copies of an object to be stored
within the same bucket. This can be used to provide a
historical record/audit trail, or to protect against overwriting or
deletion. The versioning feature is turned on at the bucket
level, with a bucket being configured to one of three states;
unversioned, versioning enabled or versioning suspended. All
buckets start in the unversioned state and once enabled for a
bucket, versioning cannot be turned off, only suspended.

Versions of an object are tracked with a VersionID, a
characteristic of all objects. When versioning is not enabled,
the VersionID of an object is stored as a null value. With
versioning enabled, each PUT (update) request for an object
stores the object with a unique VersionID, a randomly
generated character string of up to 1024 bytes in length.

As objects are updated and stored with a unique VersionID,
each copy of the object is retained in the bucket and can be
accessed by name (in which case it retrieves the latest or
current copy) or by name and VersionID. If an object is
deleted from a bucket, GET (read) requests return an error,
unless the VersionID is also included. A deleted object can be
restored by issuing a COPY request and including a specific
VersionID.

AWS offers no
opportunity for
cost reduction
on the de-
duplication of
updated
objects, so if
only a small
portion of an object is updated, each version occupies the full
capacity – 5 copies of an object occupy 5x the space and cost,
even when an object is deleted. This means implementing
versioning can quickly become expensive in AWS and this
provides object store vendors one opportunity to reduce costs
while still offering S3 API compatibility. Object storage with
de-duplication can represent a significant saving over AWS
when versioning is in place.

TIERING

AWS offers multiple categories or classes of storage within
S3. Each class offers the same level of durability (risk of data
loss/corruption) but comes with varying levels of availability
and access times. S3 tiers are: Standard, Standard –
Infrequent Access (IA) and Glacier.

Data is moved between classes using Lifecycle management,
which determines how data is managed from creation to

	
	10 TECHNICAL GUIDE: INTRODUCTION TO THE S3 API 	

destruction. Lifecycle policies determine how data within a
bucket is managed between the multiple storage layers in
S3. For example, a policy can be established to move all
items in the “archive/” folder to Glacier after 365 days (known
as a Transition) and then to delete the content after 10 years
(an Expiration) from the date of creation.

In addition to the Transition and Expiration actions, S3
provides the ability to perform the same actions on versioned
buckets with NoncurrentVersionTransition and
NoncurrentVersionExpiration respectively. These features
allow older versions of objects to be actioned in a different way
to the current versions, so the inactive copies can be moved
out more quickly to cheaper storage.

Obviously AWS has very rigid storage classes, however the
S3 API does provide the ability to specify generic storage tiers
as part of the migration action, as the target for migration is
simply defined by the StorageClass parameter. This provides

object storage vendors the capability to implement much richer
data management policies that cater for many tiers of storage
which can be defined outside of the API, without deviating
from the standards of the API itself.

REPLICATION

The S3 API provides the ability to replicate data between AWS
regions. AWS defines a region as a resilient group of
geographically close data centres. S3 provides resiliency
between data centres within a region, but there may be good
reasons for protecting data between regions, for example, for
compliance or to put data closer to an application and reduce
latency overhead.

Replication is implemented at the bucket level and acts as an
asynchronous (or eventually consistent) task. All data within a
bucket, or a subset defined by prefix can be replicated, with
each object, including Object ID, versions and metadata
transferred to the target bucket. AWS only permits a one-to-
one relationship between a source and target bucket and
unless specified, the target bucket will be based on the same
storage class as the source.

Replication, versioning and region resilience provide the
capability to protect against most data loss situations,
including user error, application data corruption and hardware
failure. What these features don’t provide is a guarantee that
data is definitely safely stored in more than one location when
an initial object PUT (save) request is issued. This may cause
compliance issues for some businesses and so object store
vendors have the ability to improve replication capabilities by

	
	11 TECHNICAL GUIDE: INTRODUCTION TO THE S3 API 	

implementing synchronous replication where appropriate for
the right type of data.

LOGGING AND BILLING

S3 offers the capability to log all actions made through the S3
API. The data is stored in another AWS product called
CloudTrail, that tracks all API calls, not just those performed
with S3. Obviously the ability to trace activity is an important
piece of any storage infrastructure and provides the basis for
auditing and compliance. CloudTrail is offered by AWS at a
very low cost but isn’t free. In addition, data logged is stored
in an S3 bucket owned by the customer and retaining large
amounts of logging data will accrue costs over time.

Billing is managed at the account level, however tags can be
associated with buckets to align charging to business
units. The use of tags is entirely freeform and not interpreted
in any way by S3, therefore the account owner is responsible
for ensuring that billing maps to data owners within a single
account.

ENCRYPTION

Previously we discussed the security aspects of controlling
access to data. S3 provides two other additional features to

ensure data is protected for access only by authorised parties
- data-at-rest encryption and encryption of data-in-flight.

Data at rest within S3 can be encrypted using either Server-
side encryption (SSE) or Client-side encryption. Server-side
encryption provides
three options to the
user; encryption
using S3 managed
keys (known as
SSE-S3), encryption
with keys stored in
S3’s key management service (KMS), known as SSE-KMS
and encryption using customer-provided keys (SSE-C). In all
three options AWS manages the encryption process, however
each provides different levels of protection. SSE-KMS, for
example provides more detailed audit tracking and
permissions to control the use of keys. SSE-C takes key
management away from AWS, putting responsibility into the
hands of the user, including ensuring that keys are properly
managed and stored.

It’s important to note that when using the S3 REST API, the
user is responsible for the encryption process when looking
after their own key management (SSE-C). However,
encryption using SSE-S3 or SSE-KMS can be specified in the
request header on a PUT (save) request. AWS also provides

“Encryption	of	data	is	an	important	
feature	of	S3.		Customers	can	choose	to	
use	AWS	encryption	and	key	
management	or	supply	their	own	
encryption	keys.		Data	can	also	be	
encrypted	by	the	user	before	storing	in	
S3.”	

	
	12 TECHNICAL GUIDE: INTRODUCTION TO THE S3 API 	

the option to use an encryption client in the SDKs for Java,
Ruby and
.NET that
take away
some of
the
overhead
of the
encryption
process.

Client-side encryption provides two options and requires the
user to encrypt data before sending it to AWS. This can be
achieved using AWS KMS managed keys, in which case the
client only needs to use the KMS master key. Alternatively,
data can be encrypted by the client before sending to S3.

Data in flight is protected using SSL when storing and
retrieving content via the API. However, when using S3 as a
website endpoint, HTTPS isn’t supported and customer have
to use CloudFront.

FEATURE RICHNESS

Many of the features discussed here address the requirements
typically seen in storage environments and are delivered as
services rather than specific parts of the infrastructure. In
most cases, the S3 implementation provides basic levels of

functionality. A good example of this is data protection, which
is implied by not explicitly managed or configured by the end
user. These kinds of features can be extended and improved
by object storage vendors with their on-premises or cloud-
based products. These enhancements can be added without
directly affecting the S3 protocol definitions, while providing
the storage administrators with additional functionality typically
expected in enterprise environments.

	

	
	13 TECHNICAL GUIDE: INTRODUCTION TO THE S3 API 	

CONCLUSIONS

There are some constraints around the implementation of S3
that can have an impact for users. These include:

• Complexity – for users new to AWS, the idea of
security rules through code could prove a little
challenging, however anyone experienced with LDAP
and AD will be used to the idea of using code to access
credentials.

• Eventual Consistency – IAM like every other AWS
feature is eventually consistent across locations. This
means it is theoretically possible to expose data as
new security rules are put in place (hence AWS’ best
practice to assume default permission of no
permissions).

• Scale Limits – there are some IAM limits in place;
accounts are limited to 100 groups, 5000 users, 250
roles and users can only appear in 10 groups. This
may prove an issue with some customers (especially
those who don’t want to use temporary credentials to
program around the problem).

Some of the scale limits may be removable through
discussions with Amazon, but naturally the ability to do this will
be influenced by the size (and spend) of the customer. One of

the features of Amazon’s Web Services business is the low
cost achieved by efficiency at scale. This is at odds with
providing customers a bespoke service.

VALUE ADD

The relative simplicity of some storage-related S3 features
means vendors supporting the S3 interface have the
opportunity to deliver value into their object store product that
provide S3 compatibility. Some of these include:

• Data Optimisation – AWS provides no cost reduction
features based on using tools like de-duplication and
compression. It’s likely that Amazon are using these
features behind the scenes to keep their overall prices
low, however customers are used to on-premises
storage savings that these features offer. At scale, S3
can be a comparatively expensive option.

• Data Protection – AWS provides limited data
protection, mainly based around the idea of eventual
consistency. Object store vendors can provide more
enterprise-class data protection, either using traditional
RAID or more likely with erasure coding techniques
that scale better. More important here is the ability for
the protection methods to be implemented at a more
granular level, for instance on buckets or accounts.

	
	14 TECHNICAL GUIDE: INTRODUCTION TO THE S3 API 	

VALIDATION

Value add services provide vendors with the option of
delivering more comprehensive object storage services
compared to AWS S3. However, the basis is still the API itself
and compatibility is a key issue, especially with some of the
more detailed aspects of IAM implementation. There aren’t
many tools available for testing S3 compatibility, however
some open source code is available, such as S3 Compatibility
Tests available on GitHub. CloudBerry Lab also has both
freeware and paid versions of CloudBerry Explorer, which
provides access to S3 and other object stores for the Windows
platform.

FURTHER READING

More information can be found on S3 and Object Storage at
the Architecting IT Blog (link). This ongoing series provides
S3 and object storage information, including the results of
testing against common object storage platforms. For more
details on AWS S3, the Amazon website provides
documentation and API reference material:

• Amazon Simple Storage Service Documentation

• Amazon Simple Storage Service API Reference

• Amazon Simple Storage Service Developer Guide

CLOUDIAN HYPERSTORE

This paper is brought to you in partnership with Cloudian, an
object store vendor. HyperStore is an appliance or software-
based object storage solution that offers 100% S3
compatibility while delivering additional features and
functionality. For more details, check out the following links:

• HyperStore Appliance

• HyperStore Operating Environment

Further details on Cloudian’s product offerings, information on
S3 and other reports and solution briefs can be found on
Cloudian’s website (link).

	
	15 TECHNICAL GUIDE: INTRODUCTION TO THE S3 API 	

THE AUTHOR

Chris M Evans has worked in the technology industry since 1987, starting as a systems programmer on the IBM mainframe platform,
while retaining an interest in storage. After working abroad, he co-founded an Internet-based music distribution company during the
.com era, returning to consultancy in the new millennium. In 2009 he co-founded Langton Blue Ltd (www.langtonblue.com), a
boutique consultancy firm focused on delivering business benefit through efficient technology deployments. Chris writes a popular
blog at http://blog.architecting.it, attends many conferences and invitation-only events and can be found providing regular industry
contributions through Twitter (@chrismevans) and other social media outlets.

LANGTON BLUE & ARCHITECTING IT

For additional technical background or other advice on the use of storage in the enterprise, contact enquiries@langtonblue.com for
more information. Langton Blue Ltd is hardware and software independent, working for the business value to the end customer.
Contact us to discuss how we can help you transform your business through effective use of technology.

Website: www.langtonblue.com
Email: enquiries@langtonblue.com
Twitter: @langtonblue
Phone: (0) 330 220 0128

Langton Blue Ltd
133 Houndsditch
London
EC3A 7BX
United Kingdom

No guarantees or warranties are provided regarding the accuracy, reliability or usability of any information contained within this
document and readers are recommended to validate any statements or other representations made for validity.

Copyright© 2009-2016 Langton Blue Ltd. All rights reserved. No portions of this document may be reproduced without the prior
written consent of Langton Blue Ltd. Details are subject to change without notice. All brands and trademarks of the respective
owners are recognised as such.

